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Abstract

Chiral symmetric di- and trialkylphosphites, derivatives ef){pborneol, )-menthol and {)-1,2:5,6-di-O-
isopropylidenex-D-glucofuranose, were studied as starting reagents for the preparation of chiral organophos-
phorus compounds. The reaction occurs by asymmetric induction atx-terbon atom of substitutec-
alkylphosphonates. The stereoselectivity of the reaction depends on the structure of the starting compounds and
the reaction conditions. The configuration of the alkylphosphonates was established by NMR spectroscopy, by
transformation intox-hydroxyalkylphosphonic acids and by X-ray crystal structure analysis. © 1998 Elsevier
Science Ltd. All rights reserved.

The past decade has witnessed high activity in the area of the asymmetric synthesis of organophos-
phorus compoundsAs a result of the intensive studies, methods have been developed for the synthesis
of a variety of optically active organophosphorus compounds. Nevertheless, further investigations in this
area are desirable.

In this paper we propose chirabSymmetric dialkylphosphites (tricoordinated tautomeric form) and
Cs-symmetric trialkylphosphites bearing chiral secondary alkoxy groups, as chiral non-racemic starting
compounds for the asymmetric synthesis of organophosphorus compounds. The symmetry reduces the
number of possible diastereomers, in particular the center of asymmetry on the phosphorus atom. We
studied the chiral symmetric phosphites under the conditions of the Kabachnik—Fields and the Pudovik
reactions, which provide optically activeaminoalkylphosphonic and-hydroxyalkylphosphonic acids,
possessing high biological activity The absolute configuration at the-position in x-substituted
phosphonic acids has been shown to be very important for biological actiwtyich makes the
asymmetric synthesis of these compounds both interesting and of practical significance.
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The chiral phosphitea—,3a,c have been synthesized by the reaction of optically active secondary
alcoholsl [(1R,2S5R)-(—)-menthol, [(19-endd-(—)-borneol or ()-1,2:5,6-di-O-isopropylidene-D-
glucofuranose] with phosphorus trichloride, in the presence of triethylamine as an acceptor of hydrogen
chloride, in very good yields (Scheme 1). The phosphtesd 3, obtained in a spectroscopically pure
state can be used for further reactions without special purification. Nevertheless we have additionally
purified the dibornylphosphitea by recrystallization from hexane, isolated the bis(glucofuranosyl)phos-
phite 2b by preparative column chromatography on silica gel, and purified the dimenthylphosphite
2c by vacuum distillation. The trivalent phosphorus compouBédsand b were purified by column
chromatography under inert g2s.
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The addition of aldehydes to dialkylphosphit2gthe Pudovik reaction) proceeds only in the pres-
ence of strong bases, such as DBU. In the presence of weaker bases (triethylamine, DABCO) the
reaction does not proceed or is extremely slow. Studies of the reaction mixturé®BfH} NMR
showed high regioselectivity and good stereoselectivity of the reaction, resulting in the formation
of a-hydroxyphosphonates in high yields (Scheme 2). The stereoselectivity of the reaction depends
on the structures of the starting compounds and the reaction conditions. For instance, compound
4b was obtained in 78% diastereomeric purity (Fig. 1), whereas the diastereomeric excess in the
case of compoundc was only 55% (Table 1). Crystallization from acetonitrile or hexane alloaws
hydroxyalkylphosphonate$to be obtained in-98-100% stereochemical purity.
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Scheme 2.

This high level of asymmetric induction was also observed in the reaction of $hsyr@metric
triesters3 (R*O=menthyl or 1,2:5,6-di-O-isopropylidene-D-glucofuranosyl) with aldehydes in the
presence of trimethylchlorosilane. The reaction proceded readily at room temperature without sol-
vent to give the silyl derivative estes, which was easily hydrolysed during isolation to yiald
hydroxyalkylphosphonates (85-90%) as a mixture of diastereomers in the ratio o#&Ran¢ of 3:1
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Fig. 1.3'P NMR spectrum ofib

Table 1
Addition of symmetric phosphitedand3 to aldehydes and aldimines

[alp™ Sp.ppm
Compound7 Yield, % de mp,°C (0.1, toluene) major/minor
4a 80 84 oil - 22.86/23.02
4b 85 78 73.5 91.5 20.36/20.08
4c 90 55 161 -69.2 21.17/20.60
4d 90 33 139 -88.9 20.36/20.08
7a 90 50 86-87 -69.2 21.81/21.67
7b 94 50 144 -47 24.0/23.81
7c 85 84 132.5 -88.9 23.30/23.03

(4d). Thex-hydroxyphosphonatéd was obtained in~100% stereoisomeric purity as white crystals after
one recrystallization of the diastereomeric mixture from hexane.

The diestersda and 4b are cleanly hydrolysed with aqueous HCI in dioxane to give tReo(-
hydroxybenzylphosphonic acifl, the configuration of which has been describ@8.The structure
of compounds4 was confirmed by mass spectroscopy &kl 13C and3!P NMR spectroscopy; the
diastereoisomeric excesses were determined by HPLE@d'H} NMR spectra’-8

Good stereoselectivity was also observed in the reaction of phosphiBsvith aldehydes and
amines (the Kabachnik—Fields reaction; Scheme 3). The reaction proceeds at room temperature or upon
heating ¢60-80°C) to givex-aminophosphonic acid diesters in high yield and good stereoselectivity:
de=50 {a), 33 (7b) and 90% {c). Crystallization ofx-aminophosphonates from hexane furnishes the
stereochemically pure speci@sThe hydrolysis of7ab with 2 N HCI in aqueous dioxane yields the
(R)-x-aminobenzylphosphonic ac&l whose absolute configuration has been descriBed.

The absoluteR)-configuration of ¢)-dibornyl «-(N-benzyl)aminophosphona#a was confirmed by
X-ray crystal analysis (Fig. 2).

In conclusion, we have shown that the readily and cheaply available phosphites, FR{Q)and
(R*O)3P are efficient starting compounds for the asymmetric synthesis of organophosphorus compounds,
including the preparation of enantiomerically pusehydroxy- and«-aminoalkylphosphonous acid
derivatives on a multigram scale. Detailed studies of this reaction and other reactions of chiral symmetric
phosphites are currently underway and will be reported in due course.
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Fig. 2. The molecular structure @&
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